
  

STO-MP-SET-262 14 - 1 

 

 

Recent Advances in Extended and Group Objects Tracking 

Lyudmila Mihaylova and Waqas Aftab 
Automatic Control and Systems Engineering, University of Sheffield 

Amy Johnson Building, Mappin Street, Sheffield S1 3JD 

United Kingdom  

Email: l.s.mihaylova@sheffield.ac.uk, waftab1@sheffield.ac.uk  

ABSTRACT  

We live in an era of increasing data and information from multiple sensors. The multiple complementary 

types of sensors introduce a variety of challenges, especially in systems with different level of autonomy, 

such as Unmanned Aerial Vehicles and surveillance systems. Autonomous systems require quick situation 

awareness, including tracking of the location and size of the objects of interest, for instance extended and 

groups which give rise to multiple measurements. Examples of extended objects are pedestrians, convoys of 

vehicles and clouds of bio-chemical contaminants. Most of the current approaches rely on well-defined 

mathematical models. However, the changes both in groups and extended objects dynamics and in the 

environment require flexible approaches able to learn and adapt to the changes. Hence, this work overviews 

the state-of-the-art approaches and focusses on data-driven approaches such as Gaussian processes for 

spatio-temporal representations of extended objects and groups.  We share our vision for future trends in 

this area .  

1.0 INTRODUCTION 

Extended object tracking (EOT) encompasses estimation of the kinematic states and the extent of an object 

of interest using sensor measurements. Group object tracking (GOT) deals with the estimation of the 

kinematic states and the group shape which comprises multiple entities [1]. Groups are structured objects, 

formations of entities moving in a coordinated manner, following a pattern. The number of group entities 

varies over time since entities can enter a scene, or disappear at random times. Both groups and extended 

object give raise to multiple measurements and hence lead to data origin measurement uncertainty. The 

sensor measurements are utilised to estimate the shape, size, volume, orientation and other parameters that 

gives valuable information regarding the spatial objects of interest. This additional information is useful for 

various civilian and military systems as it helps in object classification, intent inference and prediction. In 

applications with dense point objects, e.g. a formation of objects, being reported by multiple noisy and 

biased sensors, tracking of individual objects becomes computationally expensive. Moreover, due to high 

uncertainty in the individual object motion and the measurement origin (objects are in close vicinity), the 

performance of the data association algorithms degrade to a level that it becomes difficult to maintain 

trajectories. Hence, GOT methods provide solutions to both of the above-mentioned problems, based on the 

fact that when objects are close to each other and have similar kinematics, then the average group 

kinematics, the shape and in some cases the number of objects provides a better situational awareness than 

individual object tracking. Additionally, it also reduces the computational expense of the data association 

algorithms. 

As is the case with multiple target tracking (MTT), EOT and GOT  methods have been applied to diverse 

fields such as medical, biological, chemical, urban traffic management (both indoors and outdoors), in 

security systems, autonomous vehicles (land, sea, air), robotics, to name a few. The algorithms primarily 

serve the autonomous part of these systems. Although, GOT concepts were introduced long time ago [2], 

they have been applied extensively mainly recently to real systems. There is an exponential growth in the 
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systems employing EOT and GOT during the last two decades.  

Similar problems have been studied by the computer vision community and are called visual object tracking 

(VOT). The challenges are different although the methods overlap in some areas. In VOT, the measurement 

data is typically images obtained using a camera (red, green, blue (RGB), grayscale, infrared (IR), multi-

spectral and hyperspectral cameras). As a result, in most cases, a very precise contour of the object is 

available at all times. Comparatively, in EOT and GOT applications, only part of the object contour or 

surface is available at any particular scan.    

The EOT and GOT research has been surveyed extensively in two overview papers [1] and [3]. This paper 

provides a survey of recent methods. The structure of the paper is as follows: Section 2 discusses the 

challenges that EOT and GOT face and presents a taxonomy of the main methods developed to cope with 

them.  Section 3 describes the main concepts of the recently developed machine learning methods – 

Gaussian processes for EOT and GOT. Section 4 discusses typical datasets and performance measures used 

to evaluate the performance of methods for tracking of spatial objects. Section 5 concludes the paper and 

discussed future work.  

2.0 CHALLENGES AND METHODS 

The EOT and GOT deal with estimation of the object kinematics and extent from the sensor data. The 

estimation problem is complex as the sensor data is noisy, the object motion is unknown and the 

measurement origin is uncertain (it can be clutter). Additionally, in each time sample a portion of the object 

is detected by the sensor (instead of the complete object), the association of the measurement to the 

reflection point on the object is unknown and the reflection points change from sample to sample. The 

situation worsens in the presence of multiple closely situated objects. The object’s shape is irregular or non-

rigid and changes in time.  

Typically, in the case of single EOT, the objective is subdivided into estimation of the kinematics of the 

centre of the object (COO) and the shape is estimated with respect to the COO location. The estimates are 

correlated as the error in the COO estimation propagates in the shape estimate. The COO kinematics 

estimation is similar to point object tracking, hence the focus of the EOT research has been the extent 

estimation. The extent estimation is done using two independent models, namely the shape model and the 

shape kinematics model. Various shape models such as based on Poisson point process distributions [4], 

rectangular [5], stick [6], random matrix (ellipse) [7] models have been proposed which estimate the shape as 

a basic geometric shape. Recently, complex shape models have been proposed such as random hypersurface 

(RHM) [8], a Gaussian process (GP) approach [9], a mixture of ellipsoids, B-splines [10] and others for 

irregular shapes. The GP method, being non-parametric, is flexible and provides better performance as 

compared with the RHM [9]. The track before detect extension of EOT has been proposed in [11] and 

improved upon in [12].  

In the case of multiple extended objects, additional challenges to data association arise, also when the 

extended objects split or merge. Then two-step approaches have been proposed based on measurement 

clustering or partitioning followed by data association. The performance of measurement clustering approach 

is satisfactory for tracking distant objects. In the cases of closely situated objects or objects with crossing 

trajectories, the measurement clustering is not enough to resolve measurement ambiguities and then  

measurements partitioning is done. The measurement set partitioning deals with determining all the subsets 

of the measurement within a random finite set (RFS) [13]. A data association algorithm then provides the 

best measurement set to the object association based on the set to object state RFS likelihood. A lot of 

research has being done to determine the most probable partitions in real-time in order to reduce the 

computational complexity of the subsequent data association step. Some recent two-step based methods for 

EOT and GOT  are as follows: the box particle filter (BPF) [14] and the Gaussian process convolution 



Multimodal Explanations for AI-based Multi-sensor Fusion 

STO-MP-SET-262 14 - 3 

 

 

particle filter (GPCPF) [15], the multiple hypothesis tracker (MHT) based methods such as probabilistic 

MHT [16], the probabilistic data association (PDA) based methods such as joint PDA [17], Markov chain 

Monte Carlo methods [18] and the random finite sets (RFS) based methods such as probability hypothesis 

density (PHD) filters [19], multi-Bernuolli (MB) filters [20]. A one-step data association approach is 

proposed in [21]. The merging and splitting of extended and group objects has been studied but is not fully 

resolved.   

Some of the main types of methods developed for EOT and GOT problems are summarised in Figure 1. 

However, the presented taxonomy is not exhaustive in terms of methods or applications. Although machine 

learning methods have been used for processing the data from soft sensors, these methods have also been 

gaining popularity in the hard sensor processing, recently. The hard sensors can be classified into 

conventional (active e.g. radar, LiDAR, IR and passive e.g. optical, etc.) and non-conventional (chemical, 

biological) types. The detection and tracking of objects using video data is done by pre-processing the 

measurements (detection) followed by the visual object tracking.  

 
Figure 1. Taxonomy of methods for EOT and GOT and their applications.  

This Figure shows the EOT and GOT methods and their applications based on hard and soft sensors. 
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3.0 DATA DRIVEN METHODS 

Data driven methods relates to methods that make predictions of phenomena and events based on data 

analysis and interpretations rather than on models. These are also called Machine learning methods and have 

a big potential in dealing with high dimensional systems and large data. In the context of EOT and GOT, the 

GP and convolutional neural networks (CNN) are promising methods. Other approaches have also been 

developed for applications such as for pedestrian detection in autonomous vehicles in [22].      

3.1 EOT and GOT Using Gaussian Process Approaches 

Machine Learning (ML) encompasses data driven approaches that have been applied to diverse systems for 

various purposes: classification, inference, tracking, anomaly detection, to name a few.  GP methods [23] are 

emerging ML methods but their application to EOT and GOT is still limited. In [9] a GP framework for EOT 

and GOT is proposed where the object shape is modelled using a GP. This is one of the few approaches 

capable of estimating a complex shape, compared with most of the methods that estimate the object as a 

basic geometrical shape that is stick, circle, rectangle or ellipse. GP is a powerful framework which has also 

been used for other complex object tracking problems from data association of multiple point objects to 

overlapping mixture of Gaussian process (OMGP) [24] for data association. Most of the ML methods are 

computationally expensive and so is the Gaussian process inference. This means that, for problems where the 

input space is unbounded, e.g. for time series, the computational expense of the Gaussian process based 

method will increase and at some point the current computational resources will not be enough to provide the 

solution in real-time. In [25], a recursive filtering and smoothing solution to the Gaussian process inference 

has been proposed, which can be used to determine real-time Gaussian process inference.  

3.1.1 Background 

A Gaussian process (GP) is a stochastic process used to map a nonlinear function from an input space to an 

output space. It is different from model-based techniques, where a distribution over parameters is used for 

estimation and decision making purposes. A GP models a distribution over functions in a nonparametric way 

and thus provides more flexibility. A GP is defined by a mean and a covariance kernel. The mean models the 

mean of the mapping function and the covariance kernel represents the correlation among the GP inputs. A 

quick introduction to the GP and on the choice of mean and the covariance kernel is provided in [23]. The 

hyperparameters, the parameters of the mean and covariance kernel, can be optimised by maximising the 

likelihood of a given input-output data and this process is called learning. The given data, also called the 

training data, and the learned hyperparameters can be used to predict the mean and the prediction uncertainty 

using a GP regression.  

Suppose a GP models the nonlinear function  from a random input  to a random output . Here we are 

considering mapping from a scalar (one dimensional, 1D) input to a scalar (1D) output for simplicity. The 

GP regression, given below, is applicable to multiple dimensional inputs and multiple dimensional outputs as 

well  

 

where  represents the mean and  represents the covariance kernel of the GP. The covariance 

kernel takes two input samples (these can be same or different,  represents the order of the input) and 

depending on the covariance kernel function gives an output value. Suppose, the output  is observed at  

different input locations, which can be modelled using the following equation: 
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where represents the measurement vector corresponding to input vector  

,   represents the corresponding function vector, 

represents a vector transpose,  represents the independent identically distributed (i.i.d.) 

Gaussian measurement noise vector with variance  and   represents an -dimensional identity matrix. 

Given  input-output data pairs, the GP regression can be used to determine the output at unknown input 

location vector  as given below: 

 

 

where  represents the predicted mean output vector,  represents the corresponding output 

covariance matrix,  denotes a matrix inverse operation and  represents the GP covariance matrix 

between the two input vectors  and  and is calculated as given below: 

 

where the length of  and  is  and , respectively. 

3.1.2 Gaussian Process Convolution Particle Filter for Multiple EOT and GOT 

The Gaussian Process Convolutional Particle filter (GPCPF) [15] tracks multiple irregularly shaped objects 

moving through clutter using surface measurements. The object shape or contour tracking complexity is 

increased due to the surface measurements, as the measurements do not necessarily represent the object 

contour. The GPCPF provides flexibility, unlike other approaches, and does not require the prior knowledge 

of the statistical properties of the object measurements. The tracking problem is formulated as a state space 

model. The state vector consists of the states belonging to the COO and the extent. The extent states are 

modelled using a Gaussian process [15] as shown in Fig. 2.  

  

Figure 2: Gaussian process (GP) model for the object extent.  

This figure shows a GP model for the extent proposed in [9]. The left axis show the object (thick solid line) 

and a measurement (dot). The measurement is received in global frame at coordinates . The 

measurement coordinates in the object frame with origin at the COO that is  are . 

The local measurement coordinates are used to update the object extent at all angles from the COO using a 

GP. The axis on the right side shows the change in the object radius as a function of angle from the COO. 



Multimodal Explanations for AI-based Multi-sensor Fusion      

14 - 6 STO-MP-SET-262 

 

 

This function is unknown and nonlinear and is mapped using a GP.  

The GP maps the nonlinear function  in , shown in Fig. 2. The sensor measurements from scan to 

scan are considered as the training data for the GP regression. The multiple object posterior state estimation 

is intractable in the Bayesian framework. The estimation is achieved using the innovative convolutional 

kernels proposed in [15]. To improve the processing time, the measurement clustering is proposed as a pre-

processing step. A novel object birth and death process based on the likelihood has also been proposed. The 

GPCPF requires the state sampling and the measurement sampling using the state and measurement models, 

respectively. The measurement samples are then updated with all the measurements based on the 

convolutional kernel. This is followed by the particle weight update and the state estimates. A re-sampling 

step is also proposed to cater for degeneracy.     

3.1.3 Recent Advances 

The GP based shape model has been proposed for multiple extended / group objects tracking in the random 

finite sets (RFS) framework in [20, 26], [27]. It has been shown that the performance of the algorithm 

improves due to better shape estimation with a GP model. The inference of GP shape model has also been 

proposed using a convolution particle filter (CPF) in [28] for a single object and in [15] for multiple objects 

using LiDAR data. The tracking snapshots are shown in Figure 3. Compared with the other complex shape 

models for EOT and GOT, the GPCPF based approach is not sensitive to the statistical properties of the 

object which is required by other models when measurements are coming from the object’s surface. The GP 

based extended object tracking in 3D is demonstrated in [29]. A Bayesian object classifier based on a GP 

tracker is proposed in [30].  

 

Figure 3: Tracking snapshots of single simulated object (left) and multiple real objects (right) 
using GPCPF.  

The simulation consists of an irregularly shaped object moving through clutter (x). The true and estimated 

object COO, shape and trajectory is shown in the Figure. In the real data, the LiDAR measurements (moving 

and stationary objects) are used for tracking the moving objects (cars). The ground truth is created using the 

image data from a colour camera. The tracking results are overlaid on the corresponding camera images for 

reference.  
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4.0 PERFORMANCE EVALUATION 

It is important to validate the developed EOT/GOT methods over benchmark datasets and performance 

metrics. Some of the important datasets and common metrics used in recent papers have been covered in this 

section.  

4.1 Datasets  

Although, the EOT and GOT applications are numerous, there is still a need of well systematised benchmark 

datasets and metrics that can characterise all aspects of the EOT and GOT process. Various publicly 

available datasets have been used for performance evaluation of the developed approaches. These data 

include PETS 2012, InLiDa [31], moving object thermal infrared imagery dataset (MOTIID) [32] and 

thermal infrared video (TIV) [33]. Although these and the datasets available for VOT consist of enough 

challenging scenarios, the annotation of the ground truth is not as per the EOT / GOT requirements. Hence, 

for spatial objects the ground truth data has to be manually created by the user in such cases. Two important 

datasets for pedestrian and group tracking are the DIAMOR [34] and ATC [35].  

Standard datasets and evaluation metrics are also available for one of the fastest emerging EOT based 

application that is autonomous (ground) vehicle. Combinations of sensors, including LiDAR, are installed on 

the autonomous vehicle, which helps in the automatic navigation of the vehicle. These include the Ford 

campus vision and LiDar dataset [36], the Kitti vision benchmark suite [37], the Sydney urban objects [38], 

the Stanford track collection [39], the Oakland 3D point cloud dataset [40], and many more. Some useful 

surveillance camera datasets are also available such as ViSOR [41], VIRAT [42], EPFL [43] and CAVIAR 

[44]. 

4.2 Performance Metrics 

The performance evaluation of extended / group object tracking needs further research. Although, various 

standard metrics for evaluation of multiple target tracking algorithms exist, with the optimal sub-pattern 

assignment metric (OSPA) [45] being the most commonly used metric nowadays, a standard metric for 

evaluation of the extended objects has not been proposed yet. Different metrics have been used to determine 

the performance some of which are given below: 

 
• Centre Distance [28]:   this is the distance (usually Euclidean) between the true and the estimated 

centre and its kinematics parameters. For multiple datasets or Monte Carlo based methods, the root 

mean square errors of the distance are more useful. If  represents the true and  represents the 

estimated parameter, then the Euclidean distance  is calculated as given below: 

 .                (6) 

• Orientation Distance [46]:   this is the distance between the true and the estimated object orientation.  

• Shape Precision and Recall: the shape precision and recall [47] have been used in computer vision 

for evaluating the shape detector and estimator performance. The shape recall evaluates the portion 

of true shape recalled and is related to the evaluation of the shape detection. The shape precision 

evaluates the portion of the estimator shape which is not part of the true shape and is related to the 

false detection. For a true shape   and an estimated shape , the shape precision  and the recall  

are given below: 

 

• Intersection over Union (IoU): also called the Jaccard similarity coefficient [48], combines the 
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precision and recall in a single metric. The IoU is a ratio with value between 0 and 1, where 0 

indicates a total mismatch and 1 indicates a total match. For a true shape   and an estimated shape 

, the IoU is calculated as given below: 

 
• Track life:  is the time-span from the start to the end of the object’s existence within the surveillance 

volume. It evaluates the track birth and death process. If  and  represent the start and the end 

time, respectively, then the track life  is given below: 

      (9) 

4.3 Additional Metrics for Multiple Objects 

In case of multiple objects and clutter, additional metrics are included to evaluate especially the data 

association challenges. Some of these are the false alarms and track labelling errors. Although, these can be 

evaluated individually, research has also been done to propose a single metric that evaluates them together.  

There are several different performance metric for methods that estimate object as an ellipse (ellipse being 

the most common shape model for applications now-a days) such as the Kulbeck-Lieber (KL) divergence, 

the Gaussian Wasserstein distance [46] etc. A modified Hausdorff distance is proposed for comparing two 

star convex shape models in [49]. For multiple point objects, the OSPA metric evaluates the localization and 

cardinality errors in a single metric. This is extended to evaluate the performance of tracking algorithms 

(where errors in track labelling are introduced) in [50]. The OSPA metric for comparing two extended object 

trackers has been proposed in [51], for elliptical shape models. The same metric has been modified for 

irregular shape trackers in [52] and is called modified OSPA (mOSPA). Other useful metrics are the multiple 

object tracking accuracy (MOTA) and multiple object tracking precision (MOTP) [53].   

5.0 CONCLUSIONS AND FUTURE WORK 

This paper presents recent advances of extended and group object tracking. Ttaxonomy of the main methods 

for tracking spatial objects with regular and irregular shapes is presented. These methods fuse multiple types 

of heterogeneous sensor data and deal with measurement origin uncertainties. Most current methods for 

tracking of spatial objects are model based. Current research is mainly focused on data driven, model free 

machine learning methods able to deal with data uncertainties and with large data volumes. Gaussian process 

methods are such machine learning methods, with a big potential. Results with recently developed Gaussian 

process methods are presented and their advantages over existing methods are demonstrated.  

The spatio-temporal GP models and inference methods have a big potential of providing robust motion 

models for manoeuvring objects (both point and extended). Due to the data driven nature of the GP 

approaches, they can detect and model an infinite number of motion models. However, there are many 

theoretical questions to answer, including a thorough quantification of the propagation of the uncertainties 

and their impact on the final results. GP methods for high dimensional systems and data need cost efficient 

implementation, for real-time applications. Dealing with massive data is another challenge that is not yet 

resolved. Deep GP, convolutional GP methods can model complex motions and phenomena but the 

calculation of the on-line hyper-parameters still needs to be solved.   

Another area, yet to be explored, is the application of OMGP for resolving data association problem arising 
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in the EOT and GOT. The RFS based techniques have been primarily proposed for multiple EOT and GOT, 

but they are sensitive to the many model parameters. The data driven approach have the potential to provide 

solutions, which are less sensitive to unknown modelling parameters, deal with uncertainties and 

nonlinearities. They afford fusing different types of sensor data in an efficient manner. Other machine 

learning methods, such as convolutional neural networks and Bayesian neural networks have been mainly 

applied with imagery data. 

Unmanned vehicles for air, land and sea are becoming popular in various commercial and military missions. 

This has brought a new dimension to the security, which includes the detection, tracking and identification of 

security hazard due to these types of vehicles. For low flying small air vehicles, LiDAR is being looked upon 

as one of the possible sensors [54]. The EOT and GOT methods become increasingly important for such 

autonomous systems.  
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